Workshop on the Science of Fusion ignition on NIF May 22 – May 24, 2012

http://lasers.llnl.gov/workshops/science_of_ignition/

Panel 5: HED Materials Cross-cut

May 24, 2012: Final Panel Outbriefs Plenary Session

Panel 5 Co-Leads:

Gilbert Collins – Lawrence Livermore National Laboratory
Justin Wark – Oxford University

HED Materials - Crosscut Final Panel Outbrief

J. Wark and G. Collins

Amendt, Peter; Bailey, Jim; Boehly, Tom; Celliers, Peter; Clark, Dan; Hansen, Stephanie; Heeter, Bob; Hu, Suxing; Iglesius, Carlos; Katz, Jonathon; Kerman, Arthur; Loubeyre, Paul; Luu, Tom; Mattsson, Thomas; Wilson, Brian; Sepke, Scott; Sherrill, Manolo; Tarter, Bruce; Wallin, Brad; Epstein, Reuben; Lee, Richard; Koenig, Michel; Gericke, Dirk; Roth, Markus; More, Richard; Freeman, Rick; Sterne, Phil; and Mauche, Chris

We will go through physical models in the codes, discuss their uncertainty, and what physics is missing

Implosion Performance and NIC Observables

Physical models

HED Materials-Opacity

Underlying physics to be addressed

Physics process: Radiation absorption and emission

Approximations:

- Ionization potential depression
- Spectral line profiles
- Spectral complexity forces approximate electronic energy level descriptions
- NLTE requires kinetic approach, presently incompatible with hydro simulations
- Radiation absorption at ablation front is inherently nLTE because the incident nLTE spectrum is further distorted as the ablation plasma filters incident radiation. But even LTE transmission experiments in the T>200 eV regime are non-existent.

Research Directions

Experimental platforms:

- Need continuity for full development and exploitation
- Need 2 platforms for each high impact measurement

Experiments Should...

- Focus on strategic materials and regimes identified through thoughtful sensitivity studies
- Break the problem down to the most basic level (address microphysics in opacity models where possible)

Theory should...

- Include benchmarked microphysics (e.g., line profiles or IPD)
- Strive for self consistent EOS and opacities

Code development should...

- Use approximations to mimic benchmarked detailed models
- Reflect reality while balancing simplicity & sophistication

Learned from Recent Experiments

• Opacity & EOS models have a large influence on predicted ablator response to drive radiation, with large consequences for the implosion performance

Recent experimental results

- Discrepancies between predictions and preliminary transmission measurements (Si & Ge at Omega, Fe at Z)
- Al ionization potential depression measurements at LCLS indicate widely used Stewart Pyatt model is inadequate
- Models predictions of Au M-band emission have rarely been accurate in regimes without existing data (NIF hohlraums?)

Outcome and Potential Impact

Outcome: Stable and reproducible LTE and nLTE measurements of κ_{ν} , ϵ_{ν} will validate opacity codes & lead to QMU for ignition sims.

Impacts:

- Constrain integrated sims & improve predictive power
- Improve capsule material selection & design adaptability
- Spectrometers+Tracers: improve diagnosis wall-to-core
 - Hot-spot spectra (tracers+mix) diagnose fuel conditions

Long term benefits to all HEDP including astrophysics, stewardship and basic science as well as ICF

K-shell spectroscopy of Hot Dense Aluminium

S.M. Vinko et al, Nature, 482, 59-62 (2012) O. Ciricosta et al, submitted to PRL

HED Materials – Equation of State

Underlying physics to be addressed

- EOS controls fuel and ablator properties throughout implosion, but models are constrained over a very limited range.
- How compressible (thermo derivatives) is hydrogen (ablator) along ignition path from cryo to 1.5 Kg/cc (~100g/cc).
- What is the physics (ionization, compressibility, sound speed) of ablator at and beyond ablation front
- Behavior of strong shocks in the hotspot

Learned from Recent Experiments

- Sensitivity to EOS affects many of the unresolved differences between experiment and simulations
 - Low implosion velocity, thick ablator, drive multipliers, low hot spot pressure and rho-R
- LEH closure may be related to Au EOS
- High hotspot entropy (gas shocks, 5th shock)
- Oscillation in ablator thickness (sound speed in ablator)

Research Directions

- *Experiments and ab-initio calculations to extend, DT and ablator (ch, Be, B4C, C...) EOS on and off Hugoniot (release paths, multiple shock paths, high convergence)to peak pressures (many Gbar) to peak density >1Kg/cc (DT) and >100g/cc (ablator) does matter reach a Thomas Fermi limit?
- •Strong shocks in the gas (radiative waves, thermal conduction outrunning compression)
- •Path dependence of ch and DT compressibility/entropy (viscosity)
- •Ultra-high P mixtures (phase separation)
- •Wave propagation through stratified matter
- •Sound speed in shell in flight (1-10 +g/cc) to ensure pulseshape is tuned with reverberations
- •How does fuel boil off from dense fuel to hotspot
- •What physics sets the shape of leading density profile
- •Novel EOS measurements (e.g. isochoric heating) for NIC-relevant regimes:
 - high T, low ρ NLTE ablator blow-off region
- high ρ, lowish T ablator and DT
 Consistent NLTE EOS and opacity
- •Unknowns mixing, conductivity, viscosity...

Outcome and Potential Impact

- Improved, validated EOS can enable more predictive NIC simulations
 - Correct modeling of shock timings, density, entropy, release, with realistic drive;
 - Predictive model for hotspot size, density, temp
 - Predictive model for hotspot and shell entropy
 - Predictive model for shell compression
 - Predictive model for implosion density profile
 - Predictive compressive energy of shell
 - Predictive model for ablation and implosion velocity

Self consistent and validated EOS/Opacity may lead to predictive hohlraum performance

ICF requires knowledge of the hohlraum, ablator and fuel EOS over a broad range of conditions

Other ablator candidates include diamond, Be, B4C, Al

HED Materials Cross-Cut Nuclear Physics

Underlying physics to be addressed

- Nuclear physics underpinning prompt and radiochemical diagnostics
 - Prompt
 - Nuclear reactions with prompt γ-ray
 - Reactions affecting neutron spectrum
 - Radiochemistry
 - Nuclear reactions on unstable isotopes

Learned from Recent Experiments

- Neutron spectrum from t(t,2n)α has strong energy dependence?
- Ytt/Ydt ratios forced relook at multiple neutron scattering and deuteron breakup at high energies
- Recent SRC data demonstrate proof of principle

Research Directions

- Accelerator experiments
 - Inverse kinematics/surrogate
 - Measure reactions on unstable nuclei
- Theoretical fronts
 - Light-nuclei Reactions from First Principles
 - High-Performance computing
- Nuclear Diagnostics for HED Science
 - Investigate novel diagnostics and in-situ detectors
- The Interplay between Nuclear and Plasma Physics

Outcome and Potential Impact

- Provides window into ICF environments
- Constrains physics models
- Foundation for performing future nuclear science experiments at the NIF

HED Materials Cross-Cut Nuclear Physics and ICF Diagnostics

HED Materials: Transport

MD studies of hot spot physics

Underlying physics to be addressed

- Distribution function is it Maxwellian?
- Relaxation rates (ion thermalization, electronion), do we model them correctly?
- Alpha stopping powers

Learned from Recent Experiments

- NIC hot spot conditions (pressure, yield etc) not understood
- Anomalous OMEGA results

Research Directions

- What can be done to address the challenge?
- Theory: Detailed MD simulations of the hot spot conditions and comparison with predictions from fluid codes for equivalent conditions

Outcome and Potential Impact

- Improved insights into hot spot physics
- Better understanding of conditions where fluid-description approximations break down

HED Materials: Transport

Stopping power measurements

Underlying physics to be addressed

- Stopping power in the hot spot and cold fuel is key to understanding many parameters (yield, DSR etc)
- Very few experimental measurements of stopping power at relevant energies in plasma samples exist to compare with current models

Learned from Recent Experiments

- Stopping power well known in cold samples, very few experimental tests in plasma samples
- Ongoing GSI/Darmstadt University results, but still not quite relevant to fusion spot conditions

Research Directions

- What can be done to address the challenge?
- Current GSI/Darmstadt University stopping power experiments should be supported in developing a robust experimental platform
- A larger collaboration with the GSI/ Darmstadt University team should be developed to extend the measurements to other facilities (OMEGA, NIF)

Outcome and Potential Impact

Validation of models and improved confidence in predictions

HED Materials: Transport Electron-ion equilibration

Underlying physics to be addressed

- Electron-ion energy exchange for twotemperature plasmas
- Are collective effects important?

Learned from Recent Experiments

 A few experiments suggest relaxation rates are lower than theoretical predictions

Research Directions

- What can be done to address the challenge?
- Develop new platforms to create and probe two-temperature plasmas, both dense (strong coupling, degenerate) and low density (weak coupling)
- Use x-ray Thomson scattering for dense samples, optical Thomson scattering for low density samples

Outcome and Potential Impact

 Improved understanding of electron-ion energy exchange, and improved assessment of consequences for hot spot physics

Energy transport in the hotspot

None of these rates are benchmarked at relevant conditions

HED Matter Cross-Cutting: Kinetics

Underlying physics to be addressed

- Breakdown of fluid approximation: occurs in high-temperature, low-density, and small spatial-scale regimes
- Potential influence of self-consistent electric fields on implosions
- These effects are currently neglected in mainline simulations which are based on fluid approximation

Learned from simulations and NIF/OMEGA experiments

- 14.7 MeV proton backlighting of direct-drive implosions on OMEGA showed ~GigaVolt/m (kV/µm) electric fields in agreement with predictions
- Multi-fluid simulations suggest species separation in shock front

Research Directions

- Complete Large Scale Plasma (LSP) multi-fluid and kinetic simulations of shock morphology and propagation
- Complete LSP simulations of exploding-pusher implosion experiments on OMEGA; plan experimental tests of kinetic effects
- Calculate with LSP particle albedo effect in Knudsen layer

Outcome and Potential Impact

- Improved calculation of shock-flash timing and magnitude
- High-fidelity calculations of species stratification and diffusion

Transient passage of shock front in DT main fuel promotes interpenetration of D and T ions and frictional heating

SEPARATION

- Frictional drag between D and T fluids under action of E-field and pressure gradient at shock front promotes auxiliary heating
 - High e⁻ mobility leaves surplus ahead of shock, creating *E*-field
 - two-species effect: D moves ahead of T within shock front $(m_D < m_T)$
 - effect NOT in production codes
 - nonzero ionization states $(\overline{Z} \neq 0)$ magnify effect

Significant fuel species separation occurs before and after shock flash, according to multi-fluid LSP simulations

DT SEPARATION

NIC Rev.5.0 implosion initialized at ~20 ns for "handoff"

• Both D and T "shocks" are hotter than single-species temperature at same average radius in LSP simulations

Net effect of distinct shock separation on hot spot assembly is under study with LSP